CHEM 1515 Sections 20511 and 20516
Exam III
John III. Gelder

Name
TA's Name \qquad

Section \qquad

INSTRUCTIONS:

1. This examination consists of a total of 12 different pages. The last three pages include a periodic table, a solubility table and a table of equilibrium values. All work should be done in this booklet.
2. PRINT your name, TA's name and your lab section number now in the space at the top of this sheet. DO NOT SEPARATE THESE PAGES.
3. Answer all questions that you can and whenever called for show your work clearly. Your method of solving problems should pattern the approach used in lecture. You do not have to show your work for the multiple choice or short answer questions.
4. No credit will be awarded if your work is not shown in 3 and 4.
5. Point values are shown next to the problem number.
6. Budget your time for each of the questions. Some problems may have a low point value yet be very challenging. If you do not recognize the solution to a question quickly, skip it, and return to the question after completing the easier problems.
7. Look through the exam before beginning; plan your work; then begin.
8. Relax and do well.

Page 2 Page 3 Page $4 \quad$ MC TOTAL
(9) 1. Write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as, (l)iquid, (s)olid or (aq)ueous. Soluble ionic compounds should be written in the form of their component ions.
a) $\mathrm{HNO}_{3}(a q)+\mathrm{Ca}(\mathrm{OH})_{2}(a q) \rightarrow$
b) $\quad \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q) \quad+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}(a q) \rightarrow$
c) $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}(a q)+\mathrm{KOH}(a q) \rightarrow$
(4) 2 a . Write the ionic and net ionic chemical equation for 1 c).

Ionic equation

Net Ionic equation
(38) 3. Calculate the pH
a) $\quad 2.5 \times 10^{-3} \mathrm{M} \mathrm{HClO}_{4} \quad$ (Answer: $\mathbf{p H}=\mathbf{2 . 6 0}$)
(Answer: $\mathrm{pH}=12.18$)
c) $\quad 0.125 \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{NO}_{3}$
(Answer: $\mathrm{pH}=\mathbf{5 . 8 5}$)
d) $\quad 0.368 \mathrm{M} \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$ (propionic acid) and $0.294 \mathrm{M} \mathrm{KC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$
(20) 4. 500.0 mL of a buffer solution is $0.250 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $0.300 \mathrm{M} \mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.
a) Calculate the pH of this solution (Answer: $\mathbf{p H}=\mathbf{4 . 8 2}$)
b) Calculate the pH of the solution after adding 0.0300 mol of NaOH to the solution in part a). (Assume no change in the volume after adding the base to the buffer.)
(18) 5. Calculate the pH when
a) $\quad 25.00 \mathrm{~mL}^{\text {of }} 0.400 \mathrm{M} \mathrm{NH}_{3}$ is added to 40.0 mL of 0.250 M HCl (Answer: $\mathbf{p H}=\mathbf{5 . 0 3}$)
b) $\quad 60.00 \mathrm{~mL}$ of 0.400 M HCl is added to 80.0 mL of 0.320 M KOH (Answer: $\mathbf{p H}=$ 12.06)

Short Answer:

(5) 5. Is a solution that is 0.100 M HCN and 0.100 M KCN acidic or basic? Explain.
(5) 6. The pH of a $3.72 \times 10^{-4} \mathrm{M}$ solution of a base is 10.87 . Is the base strong or weak? Explain.

Multiple Choice: (30 points)
Print the letter (A, B , C, D, E) which corresponds to the answer selected.
\qquad
11. \qquad 12. \qquad
16. \qquad
15. \qquad
8. \qquad
9. \qquad
10. \qquad

ONLY THE ANSWERS IN THE AREA ABOVE WILL BE GRADED. Select the most correct answer for each question. Each question is worth 3 points.
7. An aqueous solution that is $1.00 \times 10^{-2} \mathrm{M}$ strychnine has a pH of 10.00 Kb for strychnine is
(A) 1.0×10^{-4}
(B) $1.0 \times \mathbf{1 0}^{-6}$
(C) 1.0×10^{-8}
(D) 1.0×10^{-10}
(E) 1.0×10^{-12}
8. If the acid dissociation constant, K_{a}, for an acid HA is 8.0×10^{-4} at $25^{\circ} \mathrm{C}$, what percent of the acid is dissociated in a 0.50 -molar solution of HA at $25^{\circ} \mathrm{C}$?
(A) 0.2%
(B) 1%
(C) 2%
(D) 4%
(E) 98%
9. What is the pH of a $1.00 \mathrm{M} \mathrm{H}_{3} \mathrm{PO} 4$ solution?
(A) -0.477
(B) 0
(C) 1.08
(D) 2.12
(E) 7.00
10. Which of the following can act as an acid or as a base in aqueous solution?
(A) $\mathrm{NH}_{4}{ }^{+}$
(B) CN^{-}
(C) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(D) $\mathrm{SO}_{4}{ }^{2-}$
(E) HSO_{4}^{-}
11. $\mathrm{H}_{2} \mathrm{CO}_{3}$ is a diprotic acid. $\left(\mathrm{K}_{\mathrm{a} 1}=4.3 \times 10^{-7}\right.$ and $\left.\mathrm{K}_{\mathrm{a} 2}=5.6 \times 10^{-11}\right)$ Which of the following species is present in the highest concentration in an aqueous solution that is $0.0100 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$?
(A) $\mathbf{H}_{2} \mathrm{CO}_{3}$
(B) H^{+}
(C) $\mathrm{HCO}_{3}{ }^{-}$
(D) $\mathrm{CO}_{3}{ }^{2-}$
(E) OH^{-}
12. A 1-molar solution of which of the following salts has the highest pH ?
(A) NaNO_{3}
(B) $\mathrm{NH}_{4} \mathrm{Cl}$
(C) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(D) NaHSO_{4}
(E) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
13.

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{HBO}_{3}{ }^{2-} \rightleftharpoons \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}
$$

The equilibrium constant for the reaction represented by the equation above is greater than 1.0. Which of the following gives the correct relative strengths of the acids and bases in the reaction in terms of a Bronsted-Lowry definition of acids and bases?

Acids
(A) $\quad \mathrm{H}_{2} \mathrm{PO}_{4}^{-}>\mathrm{H}_{2} \mathrm{BO}_{3}^{-}$
(B) $\quad \mathrm{H}_{2} \mathrm{BO}_{3}^{-}>\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
(C) $\quad \mathrm{H}_{2} \mathrm{PO}_{4}^{-}>\mathrm{H}_{2} \mathrm{BO}_{3}^{-}$
(D) $\quad \mathrm{H}_{2} \mathrm{BO}_{3}^{-}>\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
(E) $\quad \mathrm{H}_{2} \mathrm{PO}_{4}^{-}=\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$

Bases
and $\mathrm{HBO}_{3}{ }^{\mathbf{2 -}}>\mathrm{HPO}_{4}{ }^{2-}$
and $\quad \mathrm{HBO}_{3}{ }^{2-}>\mathrm{HPO}_{4}{ }^{2-}$
and $\quad \mathrm{HPO}_{4}{ }^{2-}>\mathrm{HBO}_{3}{ }^{2-}$
and $\quad \mathrm{HPO}_{4}{ }^{2-}>\mathrm{HBO}_{3}{ }^{2-}$
and $\quad \mathrm{HPO}_{4}{ }^{2-}=\mathrm{HBO}_{3}{ }^{2-}$

	$\$ \$_{18}^{58} \mathrm{Cer}^{59}$ 1140.140	$\begin{aligned} & 60 \\ & \mathrm{Nd}_{4} \\ & \hline \end{aligned}$	\| ${ }_{\text {Pm }}$		Eu	Gd	${ }^{65}$	D6	${ }^{67}$	Er				
Actinides	Th Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	F	${ }_{5}$			

Useful Information

$$
\begin{array}{lll}
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] & \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] & \mathrm{pH}+\mathrm{pOH}=14 \\
\mathrm{~K}_{\mathrm{W}}=1.00 \times 10^{-14} & &
\end{array}
$$

$$
\mathrm{x}_{1,2}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \text { for } \mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0
$$

Name	Formula	$\mathrm{K}_{\mathrm{a} 1}$	$\mathrm{K}_{\mathrm{a} 2}$	$\mathrm{K}_{\mathrm{a} 3}$
Acetic	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	1.8×10^{-5}		
Ascorbic	$\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}$	8.0×10^{-3}		
Arsenic	$\mathrm{H}_{3} \mathrm{AsO}_{4}$	5.6×10^{-3}	1.0×10^{-7}	3.0×10^{-12}
Arsenous	$\mathrm{H}_{3} \mathrm{AsO}_{3}$	6.0×10^{-10}		
Benzoic	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$	6.5×10^{-5}		
Butyric acid	$\mathrm{HC}_{4} \mathrm{H}_{7} \mathrm{O}_{2}$	1.5×10^{-5}		
Carbonic	$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.3×10^{-7}	5.6×10^{-11}	
Cyanic	HCNO	3.5×10^{-4}		
Citric	$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$	7.4×10^{-4}	1.7×10^{-5}	4.0×10^{-7}
Formic	HCHO_{2}	1.8×10^{-4}		
Hydroazoic	HN_{3}	1.9×10^{-5}		
Hydrocyanic	HCN	4.9×10^{-10}		
Hydrofluoric	HF	7.2×10^{-4}		
Hydrogen chromate ion	HCrO_{4}^{-}	3.0×10^{-7}		
Hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$	2.4×10^{-12}		
Hydrogen selenate ion	HSeO_{4}^{-}	2.2×10^{-2}		
Hydrogen sulfate ion	HSO_{4}^{-}	1.2×10^{-2}		
Hydrogen sulfide	$\mathrm{H}_{2} \mathrm{~S}$	5.7×10^{-8}	1.3×10^{-13}	
Hypobromous	HBrO	2.0×10^{-9}		
Hypochlorous	HClO	3.0×10^{-8}		
Hypoiodus	HIO	2.0×10^{-11}		
Iodic	HIO_{3}	1.7×10^{-1}		
Lactic	$\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$	1.4×10^{-4}		
Malonic	$\mathrm{H}_{2} \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}$	1.5×10^{-3}	2.0×10^{-6}	
Oxalic	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	5.9×10^{-2}	6.4×10^{-5}	
Nitrous	HNO_{2}	4.5×10^{-4}		
Phenol	$\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}$	1.3×10^{-10}		
Phosphoric	$\mathrm{H}_{3} \mathrm{PO}_{4}$	7.5×10^{-3}	6.2×10^{-8}	4.2×10^{-13}
Paraperiodic	$\mathrm{H}_{5} \mathrm{IO}_{6}$	2.8×10^{-2}	5.3×10^{-9}	
Propionic	$\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$	1.3×10^{-5}		
Pyrophosphoric	$\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}$	3.0×10^{-2}	4.4×10^{-3}	
Selenous	$\mathrm{H}_{2} \mathrm{SeO}_{3}$	2.3×10^{-3}	5.3×10^{-9}	
Sulfuric	$\mathrm{H}_{2} \mathrm{SO}_{4}$	strong acid	1.2×10^{-2}	
Sulfurous	$\mathrm{H}_{2} \mathrm{SO}_{3}$	1.7×10^{-2}	6.4×10^{-8}	
Tartaric	$\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$	1.0×10^{-3}	4.6×10^{-5}	

E. 2 DISSOCIATION CONSTANTS FOR BASES AT $25^{\circ} \mathrm{C}$

Name	Formula	K_{b}	Name	Formula	K_{b}
Ammonia	NH_{3}	1.8×10^{-5}	Hydroxylamine	HONH_{2}	1.1×10^{-8}
Aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	4.3×10^{-10}	Methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	4.4×10^{-4}
Dimethylamine	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}^{4}$	5.4×10^{-4}	Pyridine	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	1.7×10^{-9}
Ethylamine	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$	6.4×10^{-4}	Trimethylamine	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	6.4×10^{-5}
Hydrazine	$\mathrm{H}_{2} \mathrm{NNH}_{2}$	1.3×10^{-6}			

Solubility Table

Ion	Solubility	Exceptions
$\mathrm{NO}_{3}-$	soluble	none
ClO_{4}^{-}	soluble	none
Cl^{-}	soluble	except $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, * \mathrm{~Pb}^{2+}$
I^{-}	soluble	except $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Pb}^{2+}$
$\mathrm{SO}_{4}{ }^{2-}$	soluble	except $\mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Hg}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Ag}^{+}$
$\mathrm{CO}_{3}{ }^{2-}$	insoluble	except Group IA and NH_{4}^{+}
PO_{4}^{3-}	insoluble	except Group IA and $\mathrm{NH}_{4}{ }^{+}$
$-\mathrm{OH}^{3-}$	insoluble	except Group IA, $* \mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}$
S^{2-}	insoluble	except Group IA, IIA and $\mathrm{NH}_{4}{ }^{+}$
Na^{+}	soluble	none
NH_{4}^{+}	soluble	none
K^{+}	soluble	none \quad slightly soluble

